
《Fundamentals of Computer Graphics》 

Lecture 8、Ray tracing 

Part 3: Anti-aliasing 

Yong-Jin Liu 

liuyongjin@tsinghua.edu.cn 

Material by S.M.Lea (UNC) 



Adding Surface Texture  

• We want to incorporate texturing 
into a ray tracer. Two principal 
kinds of texture are used:  

– Image Texture: A 2D image is 
pasted onto each surface of 
the object; 

– Solid Texture: The object is 
considered to be carved out of 
a block of some material which 
is textured (e.g., marble). The 
ray tracer reveals the color of 
the texture at each surface 
point on the object. 

• Example: a ray-
traced scene with 
several textures. 

 



Adding Solid Surface Texture 

• We view an object as carved from some textured 
material such as marble or wood.  

• The texture is represented by a function texture(x, y, z) 
that produces an (r, g, b) color value at every point in 
space.  

• Think of this texture as a color or inkiness that varies 
with position; if you look (with x-ray vision) at different 
points (x, y, z) you see different colors.  

• When an object of some shape is defined in this space, 
and all the material outside of the shape is chipped away 
to reveal the object’s surface, the point (x, y, z) on the 
surface is revealed and has the specified texture.  



Example: A Solid 3D Checkerboard 

• Imagine a 3D checkerboard made up of 

alternating red and black cubelets stacked up 

throughout all of space.  

• We position one of the cubelets with a vertex at 

(0,0,0) and size it so that its diagonally opposite 

vertex lies at point S = (S.x, S.y,  S.z).  

• All other cubes have this same size (a width of 

S.x, a height of S.y, etc.) and they are placed 

adjacent to one another in all three dimensions.  



Example: A Solid 3D Checkerboard 

(2) 
• To write an expression for such a checkerboard texture, 

add together the integer parts of x/S.x, y/S.y, and z/S.z 
and reduce the sum modulo 2: 

• jump(x, y, z) = ((int)(x/S.x) + (int)(y/S.y) + (int)(z/S.z)) % 
2  

• We then set texture(x, y, z) to return black if jump() is 0, 
and red if jump() is 1. 

• The color of the texture sets the diffuse reflection 
coefficient of the surface: the color of the material is the 
color of the texture. The diffuse component varies at 
different positions relative to the light source, and the 
Phong specular component is the color of the light 
source.  



Example: A Solid 3D Checkerboard 

(2) 

• Notice that the sphere and cube are 

clearly made up of solid cubelets.  



Ray tracing Objects with Solid 

Textures 

• There are various ways that the texture can alter 
the light coming from a surface point: 

• 1). The light can be set equal to texture() itself, 
as if the object were glowing with that color.  

• 2). The texture tex can modulate the ambient 
and diffuse reflection coefficients, so that 

   

 

• where texture(x, y, z) is evaluated at the hit point 
(x, y, z) of the ray (most common use of texture). 

    f

nbssnsdsaa uuIuuIIzyxtexI  ),,(



Ray tracing Objects with Solid 

Textures (2) 
• The surface mimics the color fluctuations in texture(). 

• Here the specular highlight has the color of the source 
and is not affected by the texture. This makes the 
textured object appear to be shiny, as if made of plastic. 

• The hit point (x, y, z) used could be either in generic 
coordinates or in world coordinates.   

• Usually it is in generic coordinates, in which case the 
object carries the texture along with it when it is rotated 
or moved to its final position in the scene.  

– In an animation where the object is rotating or moving 
from frame to frame, the texture will be solidly 
attached to the object.  



Ray-tracing Objects with Solid 

Textures (3) 

• If, on the other hand, (x, y, z) is the world 
coordinate version, the texture is fixed in 
space.  

• Now when the object rotates or moves in 
an animation the texture will sweep over it, 
making it appear to be carved out of new 
material at each new position.  

• This can produce an interesting visual 
effect. 



Wood Texture 

• The grain in wood is due to concentric cylinders of 
varying color, corresponding to the rings seen where a 
log is cut. As the distance of points from some axis 
varies, the function jumps back and forth between two 
values. This can be simulated with a modulo function: 

• rings(r) = ((int)r) % 2;  The value of rings jumps between 
0 and 1 as r increases from 0. The texture can be made 
to jump between two preset values, say D and D + A, 
using: simple_wood(x, y, z) = D + A * rings(r/M)); 

• producing rings of thickness M concentric about the z-
axis. 

r x y 2 2



Wood Texture (2) 

• Things get more interesting if we wobble, skew, 
and rotate the rings.  

• To wobble the rings, add a component that 
varies with azimuth θ about the z-axis: rings(r/M 
+ Ksin(θ/N)). 

• To add a twist, use rings(r/M + Ksin(θ/N + Bz)). 

• To tilt the grain to be concentric about some axis 
other than the z-axis, apply a rotation before 
evaluating r and θ. T(x, y, z) = (x’, y’, z’) [a 
rotational transformation] and use  

22 yxr 



Wood Texture (3) 

• Examples: the figure shows some objects 

that appear to be carved out of wood, 

having wood grain defined in these ways. 



3D Noise and Marble Texture 

• The grain in materials 

such as marble is quite 

chaotic. There are 

turbulent rivulets of dark 

material coursing through 

the stone, with random 

whirls and blotches, as if 

the stone was formed out 

of some violently stirred 

molten material. 



Marble Texture (2) 

• We can simulate turbulence by a noise function that 
produces an apparently random value at each point (x, y, 
z) in space and then stirring it  up in a well-controlled 
way to give the appearance of turbulence. 

• The noise field itself is easy to program. Imagine defining 
a random value at each integer position in space, that is, 
at (x, y, z) = (i, j, k) for every combination of integers i, j, 
and k. Such an arrangement of points is called an 
integer lattice.  



Marble Texture (3) 

• The figure shows a 2D version, where points in a 2D 
integer lattice are labeled with noise values between 0 
and 1.  

• For instance, point (1, 2) has noise value 0.653 and point 
(3, 1) has value 0.129. 

• Part b shows a 3D integer lattice. Visualize every integer 
point having some fixed noise value, such as 0.7341 at 
(2, 2, 1). 

 



Marble Texture (4) 

• It is simplest to generate each noise value each 

time it is needed.  

• For this approach, we need a function, say float 

latticeNoise(int i,int j,int k), that returns an 

apparently random value given the integers i, j, 

and k that specify the position in the lattice.  

• The function must be efficient and completely 

repeatable: it always returns the same noise 

value for a given (i, j, k).  



Marble Texture (5) 

• We set up a fixed array, say noiseTable[ ], of 
pseudorandom noise values in an initialization step. 
Arrays of length 256 have been found to be quite 
adequate, so we use this length. 

• The main function, latticeNoise(i, j, k) simply indexes into 
noiseTable[ ] in a repeatable way.  

• To ensure that there is little or no pattern in the noise 
values as i, j, or k vary, the indexing function effectively 
scrambles or hashes the (i, j, k) combination into a value 
between 0 and 255. This is easy to accomplish using a 
second array, index[ ], that contains the values 0 through 
255 randomly permuted.   



Marble Texture (6) 

• We define two macros 

• #define PERM(x) index[(x) & 255] 

• #define INDEX(ix, iy, iz) PERM( (ix) + PERM((iy) + 
PERM(iz)) ) 

• The PERM macro takes an integer value of x and 
performs a bitwise AND operation on it with 255, 
effectively retaining only its low order 8 bits, so it is 
hashed into a value between 0 and 255.  The value of 
PERM is therefore one of the values selected from the 
index array.  

• The INDEX macro uses PERM to dip into the index array 
three times, in each case choosing an element of index[ ] 
based on one of the values ix, iy, or iz. Note that this is a 
repeatable and efficient operation, and that there is 
plenty of scrambling taking place.  

 



Marble Texture (7) 

• The latticeNoise() function then is simply: 

float latticeNoise(int i, int j, int k) 

{    return noiseTable[INDEX(i,j,k)];  } 

• It is convenient to encapsulate the noise 

functions and data into a Noise class.  

• The class declaration is given in Fig. 12.41. 

  

 



Marble Texture (8) 

• marble() returns a  position-dependent value of 
brightness between 0 and 1 that mimics the rivulets of 
dark and light stone in marble.  

• It would be used to generate a greenish marble by 
constructing a noise object at the start of the ray tracing 
with: 

 Noise n; // create and construct a noise object 

• and thereafter obtaining the texture(x, y, z) value at each 
point (x, y, z) desired as simply n.marble(x, y, z);  

• The method marble() uses noise() and turbulence(), also 
developed shortly, as well as the helper function 
latticeNoise().  

• The class constructor creates and fills the arrays 
noiseTable[ ] and index[ ].  



Marble Texture (9) 

• The values in noiseTable[ ] are created using the 
standard C function rand(), scaling the values to lie 
between 0.0 and 1.0.  

• The array index[ ] is first loaded with values 0 to 255 in 
order, and then this array is shuffled by swapping each 
of its elements in turn with some randomly-selected 
element.  

• With the function latticeNoise() in hand that produces 
random values at integer lattice points, we want a 
function noise( x, y, z) that produces random-like values 
at points in between, in fact at any point in space. We 
also want the noise to vary smoothly as x, y, and z vary. 

 



Marble Texture (10) 

• Simple linear 

interpolation between the 

lattice values gives 

acceptable results. The 

figure  shows 

interpolation in 2D; the 

3D case is similar. Here 

we wish to evaluate noise 

at (x, y) = (0.6, 1.4), given 

the noise values on the 

four surrounding corners 

of the lattice.  

• First interpolate in x along 

y = 1 and y = 2 to form 

the values n(0.6, 1) = 

lerp(0.6, n01, n11) and 

n(0.6, 2) = lerp(0.6, n02, 

n12). 

 

 



Marble Texture (11) 

• Then interpolate these in y to form 

 n(0.6, 1.4) = lerp(0.4, n(0.6, 1), n(0.6, 2)) 

• Figure 12.43 shows a possible implementation of the 
function noise() for the 3D case. It has an extra 
parameter scale that scales the given 3D point (x, y, z); 
this will be useful when we are creating turbulence.  

• The scaled point is first offset by 1000 in x, y, and z so 
that all components will be positive. (Since the lattice 
values are random anyway, this shift doesn’t change the 
statistical nature of the noise generated.)  

• Then noise values are generated at the eight lattice 
vertices that surround the point. Finally seven lerp’s are 
used to find the interpolated noise value. 



Marble Texture (12) 

• The figure shows a plot of the function noise(20, x, y, 0), 

using black for 0.0 and white for 1.0.  

• In the figure, both x and y range from –1 to 1. Some 

structure is apparent in the noise field due to the 

vagaries of the random number generation process, but 

it is not excessive. 

  



Marble Texture (13) 

• Perlin described a method for generating more 
interesting noise. The idea is to mix together several 
noise components: one that fluctuates slowly as you 
move slightly through space, one that fluctuates twice as 
rapidly, one that fluctuates four times as rapidly, etc. The 
more rapidly varying components are given 
progressively smaller strengths. The function turb(): 

  

 

• adds three such components: each is half as strong, and 
varies twice as rapidly, as its predecessor. Parameter s 
scales distances just as it does in noise().  

turb s x y z noise s x y z noise s x y z noise s x y z( , , , ) ( , , , ) ( , , , ) ( , , , )  
1

2

1

4

1

8
2 4



Marble Texture (14) 

• The figure suggests a way in 2D to see how 
turb() fluctuates. Think of the xy-plane covered 
with fixed values of noise(1, x, y, 0). For each 
point P = (x, y), turb(1, x, y, 0) sums together 
three noise values, at the points (x, y), (2x, 2y), 
and (4x, 4y) shown.  



Marble Texture (15) 

• At nearby P’ the value noise(1, x’, y’, 0) is 

very similar to noise(1, x, y, 0), but noise(2, 

x’, y, 0’) will be quite different from noise(2, 

x, y, 0), and noise(4, x’, y’, 0) will be still 

more different.  

• Features in the first noise component will 

appear at half size in the next component, 

and at quarter size in the next.  

 

 



Marble Texture (16) 

• The figure shows a plot of 
turb() (bottom) generated 
from the noise() field (top), 
when M = 3. The greater 
level of detail is apparent, 
and the fluctuations seem 
softer and more cloud-like.  

• The turb() values can be 
used to perturb some 
attribute of a shape or 
texture to give it a more 
realistic appearance. 



Creating a Marble Texture 

• Marble shows veins of dark and light material 
that have some regularity, but the veins also 
exhibit some chaotic irregularities.  

• We can build up a marble-like 3D texture by 
giving the veins a smoothly fluctuating behavior 
in, say, the z-direction, and then perturbing it 
chaotically using turb().   

• We start with a texture that is constant in x and y 
and smoothly varying in z: marble(x, y, z) = 
undulate(sin(z));  



Creating a Marble Texture (2) 

• undulate() is the spline-shaped function shown in the 

Figure that varies between some dark and some light 

value as its argument varies from -1 to 1.  

• Using sin(z) for this argument produces a periodic ripple 

in z that moves back and forth across the spline-curve, 

once each period, producing the fluctuation in intensity 

shown.  



Creating a Marble Texture (3) 

• The vertical veins of color in the marble are of 
course much too regular. So the argument of 
sin() is modulated with some turbulence: 
marble(x, y, z) = undulate(sin(z + A turb(s, x, y, 
z))); 

• The phase of the sin() is offset different amounts 
at different positions in the marble. This 
produces much more realistic veins.  

• Parameter s makes the turbulence vary more or 
less rapidly at different points; parameter A 
changes the amount of the perturbation.   

 



Creating a Marble Texture (4) 

• The figure shows the marble texture seen on the 

face of a cube. The function plotted is 

  

• where z moves from 0 at the right to 1 at the left, 

and y points upward.  The turbulence amplitude 

A = 1, 3, 6 left to right in the figure. 

g spline z A turb x y z  (sin( ( , , , )))2 5



Creating a Marble Texture (5) 

• The value of marble() 
would be used as a 
reflection coefficient to 
modulate the amount of 
light returning from 
different points in the 
object hit by different rays.   

• It is straightforward to 
extend marble() to return 
red, green, and blue 
components for full-color 
ray tracers. 

• The figure shows a ray 

traced scene containing a 

number of marble objects. 

The effect is quite 

convincing. 

 



Pasting Images on Surfaces 

• We examine how to paste images onto 

arbitrary curved surfaces in a ray tracer.  

• The routines for doing so are simple, and 

results can be excellent, but more 

execution time is usually required than 

with OpenGL.  

– Each pixel is computed individually, and no 

scan line coherence can be exploited.  



Pasting Images on Surfaces (2) 

• We assume that a 2D texture function texture(u, v) 
has been defined, as u and v vary from 0 to 1, that 
produces an intensity or color at each point (u, v). 

• texture(u, v) might be a procedural texture such as 
the checkerboard or a Mandelbrot set, or it might be 
an image texture stored in a pixmap. Suppose the 
pixmap is arranged as an N by M array of pixel 
values txtr[ ][ ].  

• Then given values for u and v between 0 and 1, we 
can index into the appropriate pixel of txtr simply 
using txtr[(int)(u/N)] [(int)(v/M)]. 



Pasting Images on Surfaces (3) 

• It is simplest to paste a texture to a generic 
object rather than the transformed version in 
scene coordinates.  

• The designer associates texture coordinates 
with coordinates on the generic object in such a 
way that when the object is transformed into the 
scene the texture appears correctly and with the 
proper aspect ratio on the transformed object. 

• We need a way to associate points (x, y, z) on a 
generic object’s surface to texture coordinates (u, 
v). Different mappings are needed for different 
generic shapes.  



Pasting Images on Surfaces (4) 

• Example: Textures for the square and plane.  

• The generic plane is the xy-plane, and the 
generic square lies in this plane.  

• There is a natural association between the 
image plane of texture(u, v) and the generic 
square or plane.  

• The designer simply chooses a window on the 
plane (left, top, right, bottom), and if the ray hits 
within this window it is easy to compute which 
point (u, v) in the texture is to be used. 



Pasting Images on Surfaces (4) 

• Given hit point (x, y, 0) in generic coordinates, the 

corresponding texture coordinates are  

• u = (x – left)/(right – left)  

• v = (y-bottom)/(top-bottom). 

• Hit points outside the window are usually set to some 

fixed value.  



Pasting Images on Surfaces (5) 

• Wrapping a texture around a generic cylinder is almost 

as easy.  

• The generic tapered cylinder is shown with a window 

specified on its surface. The window extends in azimuth 

from a1 to a2, and in z from z1 to z2.  



Pasting Images on Surfaces (6) 

• When a ray hits a cylinder at (x, y, z), we 

simply compute the azimuth as θ = 

arctan(y, x) and compute the texture 

coordinates (u, v) using 

 
u

a

a a
v

z z

z z











 1

2 1

1

2 1

,



Anti-Aliasing Ray Tracings 

• Ray tracing is inherently a point sampling 
process - taking discrete looks at a scene along 
individual rays.  

• Aliasing effects often degrade the quality of ray 
traced images and can be reduced by sampling 
a scene at more points, often called 
supersampling.  

• Several rays per pixel are traced into the scene, 
and the intensities that are returned along the 
ray are averaged. This is, of course, costly in 
execution time.  



Anti-Aliasing Ray Tracings (2) 

• The figure (a) shows a sampling pattern where rays are 

shot through the corners of the pixels. The final color 

given to each pixel is the average of the colors found at 

its four corners.  

– This level of anti-aliasing is easy to do and only costs 

a little in time.   

 



Anti-Aliasing Ray Tracings (3) 

• Supersampling can involve many more 

rays per pixel. An example of shooting 

nine rays through parts of a pixel is shown 

in the figure (b). The light returned along 

all nine rays is averaged to form the final 

pixel value.  



Anti-Aliasing Ray Tracings (4) 

• An adaptive procedure shoots more rays into 

regions where anti-aliasing is needed more 

(where there are abrupt changes in the image) 

and does a better job.  

• Rays are shot through the four corners of each 

pixel and the average intensity is formed; the 

average is compared with the four individual 

intensities.   



Anti-Aliasing Ray Tracings (5) 

• If a corner intensity differs too much from the 

average, the pixel is subdivided into quadrants, 

and additional rays are sent through the corners 

of the quadrant (c).  

 



Anti-Aliasing Ray Tracings (6) 

• The four rays for pixel P return nearly the 
same intensity because the scene is not 
changing in that region, but one of the rays 
for pixel Q sends back as intensity very 
different from the others.  

• Thus three new rays are shot through the 
corners of the lower left-hand quadrant of 
Q, and again the intensity from each is 
compared with the average.  

 



Anti-Aliasing Ray Tracings (7) 

• Subdivision is performed recursively until 
either a prefixed recursion level has been 
reached, or the four intensities are 
sufficiently close to the average to accept 
the intensity as close enough.  

• When this has been done to the four 
quadrants of a pixel as needed, the final 
pixel value is formed as a weighted 
average of the quadrant averages.  

 



Anti-Aliasing Ray Tracings (8) 

• A distributed sampling technique uses a form of 
stochastic sampling. 

• A random pattern of rays is shot into the scene for each 
pixel, and the resulting intensities are averaged.  

• For instance, a pixel can be subdivided into a regular 4 
by 4 grid.  

• But instead of shooting rays exactly through these grid 
points, a ray is shot through displaced or jittered grid 
points.   

• Jittering the sample points adds a measure of noise to 
the image but this noise can be less intrusive to the eye 
than aliasing errors. A smaller grid of samples can be 
used with jittering than without it.  



Anti-Aliasing Ray Tracings (9) 

• The figure shows the effect of jittering on a 

billiard ball. 


