Variational Inference

Jun Zhu
dcszj@mail.tsinghua.edu.cn
State Key Lab of Intelligent Technology & Systems
Tsinghua University

November 22, 2011
Inference Problems

- Compute the likelihood of observed data
- Compute the marginal distribution $p(x_A)$ over a particular subset of nodes $A \subset V$
- Compute the conditional distribution $p(x_A|x_B)$ for disjoint subsets A and B
- Compute a mode of the density
 \[\hat{x} = \arg \max_{x \in \mathcal{X}^m} p(x) \]

Methods we have

- Brute force
- Elimination
- Message Passing
 (Forward-backward, Max-product / BP, Junction Tree)

Individual computations independent Sharing intermediate terms
Sum-Product Revisited

◆ Tree-structured GMs

\[p(x_1, \cdots, x_m) = \frac{1}{Z} \prod_{s \in V} \psi_s(x_s) \prod_{(s, t) \in E} \psi_{st}(x_s, x_t) \]

◆ Message Passing on Trees:

\[M_{t \rightarrow s}(x_s) \leftarrow \kappa \sum_{x'_t} \left\{ \psi_{st}(x_s, x'_t) \psi_t(x'_t) \prod_{u \in N(t) \setminus s} M_{u \rightarrow t}(x'_t) \right\} \]

- On trees, converge to a unique fixed point after a finite number of iterations
Junction Tree Revisited

General Algorithm on Graphs with Cycles

- Start
- Triangularization
- Construct JTs
- Message Passing on Clique Trees

\[
\tilde{\phi}_S(x_S) \leftarrow \sum_{x_{B \setminus S}} \phi_B(x_B)
\]

\[
\phi_C(x_C) \leftarrow \frac{\tilde{\phi}_S(x_S)}{\tilde{\phi}_S(x_S)} \phi_C(x_C)
\]
Local Consistency

- Given a set of functions \(\{\tau_C, \ C \in C\} \), and \(\{\tau_S, \ S \in S\} \) associated with the cliques and separator sets

- They are locally consistent if:

\[
\sum_{x'_S} \tau_S(x'_S) = 1, \ \forall S \in S
\]

\[
\sum_{x'_C| x'_S = x_S} \tau_C(x'_C) = \tau_S(x_S), \ \forall C \in C, \ S \subset C
\]

- For junction trees, local consistency is equivalent to global consistency!
Summary So Far

- Exact inference methods are limited to tree-structured graphs

- Junction Tree methods is exponentially expensive to the tree-width

- Message Passing methods can be applied for loopy graphs, but lack of analysis!
Next Step …

- Develop a general theory of variational inference
- Introduce some approximate inference methods
- Provide deep understandings to some popular methods
Exponential Family GMs

Canonical Parameterization

\[p_\theta(x_1, \cdots, x_m) = \exp \left\{ \theta^\top \phi(x) - A(\theta) \right\} \]

- Effective canonical parameters

\[\Omega := \left\{ \theta \in \mathbb{R}^d | A(\theta) < +\infty \right\} \]

- Regular family: \(\Omega \) is an open set.

- Minimal representation: if there does not exist a nonzero vector \(a \in \mathbb{R}^d \) such that \(a^\top \phi(x) \) is a constant
Examples

- Ising Model (binary r.v.: \{-1, +1\})

\[
p_{\theta}(x) = \exp \left\{ \sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t - A(\theta) \right\}
\]

- Gaussian MRF

\[
p_{\theta}(x) = \exp \left\{ \sum_{s \in V} \theta_s x_s + \frac{1}{2} \text{Tr}(\Theta xx^\top) - A(\theta) \right\}
\]

\[
\Omega = \left\{ (\theta, \Theta) \in \mathbb{R}^m \times \mathbb{R}^{m \times m} | \Theta < 0, \Theta^\top = \Theta \right\}
\]
Mean Parameterization

- The mean parameter μ_α associated with a sufficient statistic is defined as $\phi_\alpha : \mathcal{X}^m \rightarrow \mathbb{R}$

$$\mu_\alpha = \mathbb{E}_p[\phi_\alpha(X)] = \int \phi_\alpha(x)p(x)\nu(dx)$$

- Realizable mean parameter set

$$\mathcal{M} := \left\{ \mu \in \mathbb{R}^d \mid \exists p \text{ s.t. } \mathbb{E}_p[\phi_\alpha(X)] = \mu_\alpha, \forall \alpha \in \mathcal{I} \right\}$$

 - A convex subset of \mathbb{R}^d
 - Convex hull for discrete case

$$\mathcal{M} = \left\{ \mu \in \mathbb{R}^d \mid \sum_{x \in \mathcal{X}^m} \phi(x)p(x) = \mu, \text{ for some } p(x) \geq 0, \sum_{x \in \mathcal{X}^m} p(x) = 1 \right\}$$

 $\triangleq \text{conv}\left\{ \phi(x), x \in \mathcal{X}^m \right\}$

 - Convex polytope when $|\mathcal{X}^m|$ is finite
Convex Polytope

- Convex hull representation

\[\mathcal{M} = \text{conv}\left\{\phi(x), x \in \mathcal{X}^m\right\}, \text{ where } |\mathcal{X}^m| \text{ is finite.} \]

- Half-plane based representation
 - Minkowski-Weyl Theorem:
 - any polytope can be characterized by a finite collection of linear inequality constraints

\[\mathcal{M} = \left\{\mu \in \mathbb{R}^d | a_j^T \mu \geq b_j, \forall j \in \mathcal{J}\right\}, \text{ where } |\mathcal{J}| \text{ is finite.} \]
Example

- Two-node Ising Model
 - Convex hull representation
 \[M = \text{conv}\{(0,0,0), (1,0,0), (0,1,0), (1,1,1)\} \]
 - Half-plane representation
 - Probability Theory:
 \[\mu_i \geq \mu_{12} \geq 0 \quad 1 + \mu_{12} - \mu_1 - \mu_2 \geq 0 \]
Marginal Polytope

Canonical Parameterization

\[p_\theta(x) \propto \exp\left\{ \sum_{v \in V} \theta_v(x_v) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\} \]

\[\theta_s(x_s) := \sum_j \theta_{s;j} \mathbb{I}_{s;j}(x_s) \quad \theta_{st}(x_s, x_t) := \sum_{(j,k)} \theta_{st;jk} \mathbb{I}_{st;jk}(x_s, x_t) \]

Mean parameterization

\[\mu_{s;j} = \mathbb{E}_p[\mathbb{I}_{s;j}(X_s)] = p(X_s = j), \quad \forall j \in \mathcal{X}_s \]

\[\mu_{st;jk} = \mathbb{E}_p[\mathbb{I}_{st;jk}(X_s, X_t)] = p(X_s = j, X_t = k), \quad \forall (j, k) \in \mathcal{X}_s \times \mathcal{X}_t \]

Marginal distributions over nodes and edges

\[\mu_s(x_s) := \sum_{j \in \mathcal{X}_s} \mu_{s;j} \mathbb{I}_{s;j}(x_s) \quad \mu_{st}(x_s, x_t) := \sum_{(j,k) \in \mathcal{X}_s \times \mathcal{X}_t} \mu_{st;jk} \mathbb{I}_{st;jk}(x_s, x_t) \]

Marginal Polytope

\[\mathbb{M}(G) := \left\{ \mu \in \mathbb{R}^d | \exists p \text{ with marginals } \mu_s(x_s), \mu_{st}(x_s, x_t) \right\} \]
Roles of Mean Parameters

- **Forward Mapping:**
 - From $\theta \in \Omega$ to the mean parameters $\mu \in \mathcal{M}$
 - A fundamental class of inference problems in exponential family models

- **Backward Mapping:**
 - Parameter estimation to learn the unknown $\theta \in \Omega$
Conjugate Duality

- Duality between MLE and Max-Ent:
 - For all $\mu \in \mathcal{M}^\circ$, a unique canonical parameter $\theta(\mu)$ satisfying
 \[\mu = \nabla A(\theta(\mu)) = \mathbb{E}_{\theta(\mu)}[\phi(X)] \quad A^*(\mu) = \begin{cases} -H(p_{\theta(\mu)}) & \text{if } \mu \in \mathcal{M}^\circ \\ +\infty & \text{if } \mu \notin \tilde{\mathcal{M}} \end{cases} \]
 - The log-partition function has the variational form
 \[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \theta^T \mu - A^*(\mu) \} \quad (*) \]
 - For all $\theta \in \Omega$, the supremum in (*) is attained uniquely at $\mu \in \mathcal{M}^\circ$ specified by the moment-matching conditions
 \[\mu = \mathbb{E}_\theta[\phi(X)] \]

- Bijection for minimal exponential family
Example

- **Bernoulli**
 \[\phi(x) = x, \quad A(\theta) = \log(1 + \exp(\theta)), \quad \Omega = \mathbb{R} \]
 \[A^*(\mu) = \sup_{\theta \in \Omega} \{ \theta^\top \mu - \log(1 + \exp(\theta)) \} \quad (**) \]
 \[\mu = \frac{\exp(\theta)}{1 + \exp(\theta)} \quad (\mu = \nabla A(\theta)) \]

- **Reverse mapping:**
 \[\frac{\exp(\theta)}{1 + \exp(\theta)} \quad (\mu = \nabla A(\theta)) \]
 \[\theta(\mu) = \log\left(\frac{\mu}{1 - \mu}\right) \quad \text{Unique!} \]
 \[A^*(\mu) = \mu \log \mu + (1 - \mu) \log(1 - \mu) \]

- **If** \(\mu \in \mathcal{M}^\circ = (0, 1) \)

- **If** \(\mu \notin \mathcal{M} = [0, 1] \)
 No gradient stationary point in the Opt. problem (**) \[A^*(\mu) = +\infty \]

- **If** \(\mu \notin \mathcal{M} = [0, 1] \)
 No gradient stationary point in the Opt. problem (**) \[A^*(\mu) = +\infty \]

- **Reverse mapping:**
 \[\mu(\theta) = \frac{\exp(\theta)}{1 + \exp(\theta)}, \quad A(\theta) = \log(1 + \exp(\theta)) \quad \text{Unique!} \]
Variational In General

- An umbrella term that refers to various mathematical tools for optimization-based formulations of problems, as well as associated techniques for their solution.

General idea:
- Express a quantity of interest as the solution of an optimization problem
 \[A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \theta^\top \mu - A^*(\mu) \right\} \]

- The optimization problem can be relaxed in various ways
 - Approximate the functions to be optimized
 - Approximate the set over which the optimization takes place

- Goes in parallel with MCMC
A Tree-Based Outer-Bound to a $\mathbb{M}(G)$

- Local Consistent (Pseudo-) Marginal Polytope
 \[\tau := \{ \tau_s, \ s \in V; \ \tau_{st}, \ (s, t) \in E \} \]
 \[\mathbb{L}(G) := \{ \tau \geq 0 | \text{normalization and marginalization constraints hold.} \} \]
 - normalization \[\sum_{x_s} \tau_s(x_s) = 1, \ \forall s \in V \]
 - Marginalization

\[\forall (s, t) \in E: \sum_{x'_t} \tau_{st}(x_s, x'_t) = \tau_s(x_s), \ \forall x_s \in X_s \]
\[\sum_{x'_s} \tau_{st}(x'_s, x_t) = \tau_t(x_t), \ \forall x_t \in X_t \]

- Relation to $\mathbb{M}(G)$
 - $\mathbb{M}(G) \subseteq \mathbb{L}(G)$ holds for any graph
 - $\mathbb{M}(G') = \mathbb{L}(G)$ holds for tree-structured graphs
A \(\mathbb{M}(G) \subset \mathbb{L}(G) \) Example

- A three node graph (binary r.v.)

\[
\tau_s(x_s) := [0.5 \ 0.5]
\]

\[
\tau_{st}(x_s, x_t) := \begin{bmatrix}
\beta_{st} & 0.5 - \beta_{st} \\
0.5 - \beta_{st} & \beta_{st}
\end{bmatrix}
\]

- For any \(\beta_{st} \in [0, 0.5] \), we have \(\tau \in \mathbb{L}(G) \)

- For \(\beta_{12} = \beta_{23} = 0.4 \), and \(\beta_{13} = 0.1 \), we have \(\tau \notin \mathbb{M}(G) \)
 - an exercise?
Bethe Entropy Approximation

Approximate the negative entropy $A^*(\mu)$, which doesn’t have a closed-form in general graph.

Entropy on tree (Marginals)

- recall:
 \[p_\mu = \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \]

- entropy
 \[H(p_\mu) = \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) \]

Bethe entropy approximation (Pseudo-marginals)

\[-A^*(\tau) \approx H_{\text{Bethe}}(\tau) := \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}) \]
Bethe Variational Problem (BVP)

- We already have:
 - a convex (polyhedral) outer bound $\mathbb{L}(G')$
 - $\mathbb{M}(G) \subseteq \mathbb{L}(G')$
 - the Bethe approximate entropy

\[-A^*(\tau) \approx H_{\text{Bethe}}(\tau) := \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st})\]

Combining the two ingredients, we have

$$\max_{\tau \in \mathbb{L}(G')} \left\{ \theta^T \tau + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}) \right\}$$

- a simple structured problem (differentiable & constraint set is a simple polytope)
- Max-product is the solver!
Connection to Sum-Product Alg.

Lagrangian method for BVP:

\[\mathcal{L}(\tau, \lambda; \theta) := \theta^\top \tau + H_{\text{Bethe}}(\tau) + \sum_{s \in V} \lambda_{ss} C_{ss}(\tau) \]

\[+ \sum_{(s,t) \in E} \left[\sum_{x_s} \lambda_{st}(x_s) C_{ts}(x_s; \tau) + \sum_{x_t} \lambda_{st}(x_t) C_{st}(x_t; \tau) \right] \]

\[C_{ss}(\tau) := 1 - \sum_{x_s} \tau_s(x_s), \quad C_{st}(x_s; \tau) := \tau_s(x_s) - \sum_{x_t} \tau_{st}(x_s, x_t) \]

Sum-product and Bethe Variational (Yedidia et al., 2002)

- For any graph \(G \), any fixed point of the sum-product updates specifies a pair of \((\tau^*, \lambda^*)\) such that

\[\nabla_\tau \mathcal{L}(\tau^*, \lambda^*; \theta) = 0, \quad \text{and} \quad \nabla_\lambda \mathcal{L}(\tau^*, \lambda^*; \theta) = 0 \]

- For a tree-structured MRF, the solution \((\tau^*, \lambda^*)\) is unique, where correspond to the exact singleton and pairwise marginal distributions of the MRF, and the optimal value of BVP is equal to \(A(\theta) \)
Proof
Discussions

- The connection provides a principled basis for applying the sum-product algorithm for loopy graphs

However,

- this connection provides no guarantees on the convergence of the sum-product alg. on loopy graphs
- the Bethe variational problem is usually non-convex. Therefore, there are no guarantees on the global optimum
- Generally, there are no guarantees that $A_{\text{Bethe}}(\theta)$ is a lower bound of $A(\theta)$

However, however

- the connection and understanding suggest a number of avenues for improving upon the ordinary sum-product alg., via progressively better approximations to the entropy function and outer bounds on the marginal polytope!
Inexactness of Bethe and Sum-Product

- From Bethe entropy approximation
 - Example \(\mu_s(x_s) = [0.5 \ 0.5] \)
 \[
 \mu_{st}(x_s, x_t) := \begin{bmatrix}
 0.5 & 0 \\
 0 & 0.5
 \end{bmatrix}
 \]
 \[
 H_{\text{Bethe}}(\mu) = 4 \log 2 - 6 \log 2 = -2 \log 2 < 0 \quad !!
 \]
 True entropy: \(\log 2 \)

- From pseudo-marginal outer bound
 - strict inclusion
Kikuchi and Hypertree-based Methods

- Hyper-graphs $G = (V, E)$
 - Hyper-edge: a subset of V
 - Hyper-edges form a partially ordered set by inclusion or poset
 - Poset diagram:

- Hyper-trees
 - Acyclic hyper-graphs
 - Ordinary trees are special cases
Hyper-Tree Factorization

For a hyper-tree with an edge set containing all intersections between maximal hyper-edges, the underlying distribution is guaranteed to factorize as

\[p_\mu(x) = \prod_{h \in E} \psi_h(x_h; \mu) \]

- where \(\mu = (\mu_h, \ h \in E) \) is a set of marginals associated with the hyper-edge set
 \[\log \psi_h(x_h) := \sum_{g \subseteq h} \omega(g, h) \log \mu_g(x_g) \rightarrow \log \mu_h(x_h) = \sum_{g \subseteq h} \log \psi_g(x_g) \]

- Möbius function \(\omega : E \times E \rightarrow \mathbb{R} \)
 * Recursive definition: \(\omega(g, g) = 1, \ \forall g \in E \quad \omega(g, h) = 0, \ \forall h \subsetneq g \)

\[\omega(g, h) = - \sum_{f | g \subseteq f \subseteq h} \omega(g, h) \]
Examples

- Ordinary tree:
 - Möbius functions are \(\omega(g, g) = 1, \forall g \in E \)
 - \(\omega(\{s\}, \{s, t\}) = -1, \forall s \in V, \text{ and } \{s, t\} \in E \)
 - \(\omega(g, h) = 0, \forall g \subseteq h \)
 - we have \(\psi_{st}(x_s, x_t) = \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s)\mu_t(x_t)} \)

- More complex example
 - Recall: \(\log \mu_h(x_h) = \sum_{g \subseteq h} \log \psi_g(x_g) \)
 - we have

\[
\begin{align*}
\psi_5 &= \mu_5 \\
\psi_{25} &= \frac{\mu_{25}}{\mu_5} \\
\psi_{1245} &= \frac{\mu_{1245}}{\psi_{25}\psi_{45}\psi_5} = \cdots = \frac{\mu_{1245}\mu_5}{\mu_{25}\mu_{45}}
\end{align*}
\]

- Put all the pieces together, we have

\[
p_{\mu} = \frac{\mu_{1245}\mu_{2356}\mu_{4578}}{\mu_{25}\mu_{45}}
\]
Hyper-Tree Entropy

Hyper-edge entropy and multi-information

\[H_h(\mu_h) := -\sum_{x_h} \mu_h(x_h) \log \mu_h(x_h) \]

\[I_h(\mu_h) := \sum_{x_h} \mu_h(x_h) \log \psi_h(x_h) \]

Hyper-tree entropy:

\[H_{\text{hyper}} = -\sum_{x_h} I_h(\mu_h) \]

- alternatively

\[H_{\text{hyper}} = \sum_{h \in E} c(h) H_h(\mu_h) \]

- where the overcounting numbers are

\[c(h) := \sum_{e \supseteq f} \omega(f, e) \]

- an exercise?
Kikuchi Approximation

- Recall: Bethe variational method uses a tree-based (Bethe) approximation to entropy, and a tree-based outer bound on the marginal polytope.
- Kikuchi method extends these tree-based approximations to more general hyper-trees.

- Generalized pseudomarginal set \(\tau := \{ \tau_h, \ h \in E \} \)

\(\mathbb{L}_t(G) := \{ \tau \geq 0 | \text{normalization and marginalization constraints hold} \} \)

- Normalization \(\sum_{x'_h} \tau_h(x'_h) = 1, \ \forall h \in E \)
- Marginalization \(\sum_{\{x'_h | x'_g = x_g\}} \tau_h(x'_h) = \tau_g(x_g), \ \forall g \subset h \)

- Hyper-tree based approximate entropy

\[H_{\text{app}}(\tau) = \sum_{g \in E} c(g) H_g(\tau_g) \]

- Hyper-tree based generalization of BVP

\[\max_{\tau \in \mathbb{L}_t(G)} \left\{ \theta^\top \tau + H_{\text{app}}(\tau) \right\} \]
Example

Grid MRF:

- the approximate entropy
\[H_{\text{app}} = [H_{1245} + H_{2356} + H_{4578} + H_{5689}] - [H_{25} + H_{45} + H_{56} + H_{58}] + H_5 \]
- the pseudo-marginal polytope
 - Normalization conditions ?
 - Marginalization constraints ?
Generalized Belief Propagation

Recall: Belief Propagation (Max-Product) is a Lagrangian-based message passing algorithm for Bethe approximation.

Generalized BP is a natural generalization of BP for the Hyper-tree based approximation.

Some notations:
- Descendants: $\mathcal{D}(h) := \{g \in E | g \subset h\}$
- Ancestors: $\mathcal{A}(h) := \{g \in E | g \supset h\}$
- $\mathcal{D}^+(h) := \mathcal{D}(h) \cup \{h\}$
- $\mathcal{A}^+(h) := \mathcal{A}(h) \cup \{h\}$
Parent-to-Child Message Passing

Update rule for pseudo-marginals:
\[\tau_h(x_h) \propto \left[\prod_{g \in \mathcal{D}^+(h)} \psi_g(x_g; \theta) \right] \left[\prod_{g \in \mathcal{D}^+(h)} \prod_{f \in \text{Par}(g) \setminus \mathcal{D}^+(h)} M_{f \rightarrow g}(x_g) \right] \]

Hyper-edge (1245):
- Descendants
- Relevant parents

\[\tau_{1245} \propto \psi_1' \psi_2' \psi_5' \psi_4' \psi_2' \psi_4' \psi_5' M_{2356 \rightarrow 25} M_{4578 \rightarrow 45} M_{56 \rightarrow 5} M_{58 \rightarrow 5} \]

Hyper-edge (45):

\[\tau_{45} \propto \psi_4' \psi_5' M_{1245 \rightarrow 45} M_{4578 \rightarrow 45} M_{25 \rightarrow 5} M_{56 \rightarrow 5} M_{58 \rightarrow 5} \]

\[\tau_{5} \propto \psi_5' M_{45 \rightarrow 5} M_{25 \rightarrow 5} M_{56 \rightarrow 5} M_{58 \rightarrow 5} \]
Summary

- Variational methods in general turn inference into an optimization problem.

- However, both the objective function and constraint set are hard to deal with.

- Bethe variational approximation is a tree-based approximation to both objective function and marginal polytope.

- Belief propagation is a Lagrangian-based solver for BVP.

- Generalized BP extends BP to solve the generalized hyper-tree based variational approximation problem.