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Bias/Variance Tradeoff 
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•  Bias of a model 
–  The expected generalization error even if we were to fit it to a very large training set 
–  The linear model suffers from large bias, and may underfit the data.   

•  Variance of a model 
–  When fitting a 5th order polynomial, there is a large risk that we are fitting patterns in the data that 

happened to be present in our small, finite training set, but that do not reflect the wider pattern of the 
relationship between x and y. 

•  Tradeoff between bias and variance 
–  If the model is too “simple” and has very few parameters, then it may have large bias, but small variance. 

–  If the model is too “complex” and has very many parameters, then it may suffer from large variance.  
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Questions 

•  Can we make formal the bias/variance 
tradeoff? 

•  Can we relate error on the training set to 
generalization error? 

•  Are there conditions under which we can 
actually prove that learning algorithms will work 
well? 
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Lemma1 

•  The union bound 
–  Let A1, A2,…, Ak be k different events (may not be 

independent), then 

–  Intuition: the probability of any one of k events happening 
is at most the sums of the probabilities of the k different 
events.  

1 1( ... ) ( ) ... ( )k kP A A P A P A∪ ∪ ≤ + +
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Lemma2 
•  Hoeffding inequality (Chernoff bound) 

–  Let Z1,…,Zm be m independent and identically distributed (iid) random 
variables drawn from a Bernoulli(ϕ) distribution.  I.e. P(Zi=1)= ϕ and P(Zi=0)=1- 
ϕ. Let                        be the mean of these random variables, and let any γ>0 
be fixed. Then 

–  The lemma says that if we take     to be our estimate of ϕ, then the probability 
of our being far from the true value is small, given that m is large. 

–  Another way of saying is that if you have a biased coin whose chance of 
landing on heads if ϕ , then is you toss it m times and calculate the fraction of 
times that it came up heads, that will be a good estimate of ϕ with high 
probability.    

The image cannot be displayed. Your 
computer may not have enough memory to 
open the image, or the image may have been 
corrupted. Restart your computer, and then 
open the file again. If the red x still appears, 
you may have to delete the image and then 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the 
file again. If the red x still appears, you may have to delete the image and then insert it again.
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Training Error 

•  Given a training set S={(x(1), y(1)),(x(2), y(2)),…,(x(m), 
y(m))}, y ∈ {-1,1},where (x(i), y(i)) are drawn iid from 
some probability distribution D.  

•  For a hypothesis h, we define  the training error 
( empirical risk or empirical error) to be  

ε̂(h) = 1
m

1{h(x(i ) ) ! y (i )}
i=1

m

"
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Generalization Error 

ε(h) = P(x ,y )~D (h(x) ≠ y)

•  This is the probability that, if we now draw a new 
example (x,y) from the distribution D, h will 
misclassify it. 
–  Note here we assume that the training and testing are on 

the same distribution 
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Hypothesis Class�

•  Hypothesis class  H 
– The set of all classifiers  
– E.g., for linear classification, H is the set of all 

classifiers over X (the domain of the inputs) where 
the decision boundary is linear. 

H ={hθ : hθ = sgn{θ
T x ≥ 0},θ ! Rn+1}
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Empirical Risk Minimization�

•  A minimization over the class of functions H, 
in which the learning algorithm picks the 
hypothesis: 

ĥ = argmin
h∈H

ε̂(h)
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Finite H �

•  Assume k finite hypotheses , i.e., H ={h1, …, hk} 
•  Thus, H is just a set of k functions mapping from X to {0,1}, 

and the empirical risk minimization selects    to be whichever 
of these k functions has the smallest training error. 

•  The goal is to give guarantees on the generalization error 
of    .  

•  The strategy is 
–  We will show that        is a reliable estimate of        for all h 
–  We will show that this implies an upper-bound on the generalization 

error of   

ĥ

ĥ

ε̂(h) ε(h)

ĥ
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              is a reliable estimate of        for one hi 

•  Firstly take any one fixed hi ∈H .   
•  Define a Bernoulli random variable Zj=1{hi(x(j))≠y(j)}.  
•  Then we see that the misclassification probability on a randomly 

drawn example       is exactly the expected value of Zj. 

•  The training error can be written as 
•  Then apply the Hoeffding inequality to obtain  

–  The equation shows for particular hi , training error will be close to 
generalization error with high probability, assuming m is large. 

ε(h)

ε̂(hi ) =
1
m

Zj
j=1

m

!

P(|ε(hi ) ! ö! (hi ) |>! ) ! 2exp(" 2! 2m)

ε̂(h) ε(h)
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              is a reliable estimate of        for all h 

•  Let Ai denote the event that                   .  
•  Thus, using the union bound, we have that 

•  If we subtract both sides from 1, we find that 

–  Uniform convergence:  with probability at least                         , we have that         will be 
within γ of          all hi ∈H   

P(∃h∈ H |ε(hi ) ! ö! (hi ) |>! ) = P(A1 ! ...! Ak ) ! P(Ai )
i=1

k

! " 2exp(#2! 2m)
i=1

k

! = 2kexp(! 2! 2m)

ε̂(h) ε(h)

|! (hi ) ! ö! (hi ) |>!

P(Â! h " H |! (hi ) # ö! (hi ) |>! ) = P($ h " H |! (hi ) # ö! (hi ) |%! )

& 1# 2kexp(#2! 2m)

1! 2kexp(! 2! 2m) ε(h)
ε̂(h)
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Solve m�
•  Question: Given γ and some δ>0, how large must m 

be before we can guarantee that with probability at 
least 1-δ, training error will be within γ of 
generalization error? 

•  By setting                            , we find that 

•  The bound tells us the number of training example 
needed to make this guarantee is only logarithmic in k, 
the number of hypotheses in H.    �

! = 2kexp(−2! 2m)

m≥
1

2! 2
log

2k
"
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Solve γ�
•  Similarly, hold m and δ fixed and solve γ, and show 

that with probability 1-δ, we have that for all h ∈H   

| öε(h) ! ε(h) |≤
1

2m
log

2k
δ
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Generalization of                           �
•  Question: what can we prove the generalization of our learning algorithm 

that picked                            ? 
•  Define                            to be the best possible hypothesis in H. Thus 

•  The first line used the uniform convergence assumption 
•  The second line used the fact that     was chosen to minimize        and hence        

for all h, and in particular  
•  The third line used the uniform convergence assumption again. 

–  Theorem . Let |H|=k, and let any m, δ be fixed. Then with probability at least 
1-δ, we have that 

–  Corollary . Let |H|=k, and let any γ, δ be fixed. Then for                                
to hold with probability at least 1-δ, it suffices that      

–        

ĥ = argminh! H !̂ (h)

ĥ = argminh! H !̂ (h)

h*= argminh! H ! (h)

! ( öh) ! ö! ( öh)+"

! ö! (h*)+"

! ! (h*)+2"

öh ö! (h)
! ( öh) ! ö! (h*)

! ( öh) ! ö! (h)

! ( öh) ! min
h! H

! (h)+2
1

2m
log

2k
"

! ( öh) ! min
h! H

! (h)+2"

m!
1

2! 2
log

2k
!

=O(
1
! 2

log
k
!

)
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Infinite H �

•  Suppose H is parameterized by d real numbers, and one real number 
uses 64 bits t be represented.  

•  Then the hypothesis class consists of at most k=264d different hypotheses.  
•   Thus to guarantee                      , with to hold with probability at least 1-δ, 

it suffices that  

–  Thus the number of training examples needed is at most linear in the parameters of the 
model. 

•  The fact that we relied on 64-bit floating point makes this argument not 
entirely satisfying, we introduce VC dimension to derive a more satisfying 
argument. 

–    

ε(ĥ) ! ε(h* )+2γ

m! O(
1
! 2

log
264d

!
) =O(

d
! 2

log
1
"

) =O! ," (d)
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Vapnik-Chervonenkis Dimension�

•  Given a set S={x(i),…,x(d)} of points x(i) ∈X, we say that H 
shatters S if H can realize any labeling on S. I.e., if for any set of 
labels {y(1), …, y(d)}, there exists some h∈H so that h(x(i))=y(i) for all 
i=1,…,d. 

•  VC Dimension 
–  Given a hypothesis class H, we define its VC dimension VC(H) to be 

the size of the largest set that is shattered by H 
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VC Dimension Example1�

•  Question: Can the set H of the classifiers (h(x)=sign(x.x-b)) 
shatter the following points? 

•  The answer is no. There are four training sets to consider 
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VC Dimension Example2�
•  Question: Can the set H of the linear classifiers 

(h(x)=1(θ0+θ1x1+θ2x2)≥0) shatter the right points? 

•  The answer is yes. There are eight training sets to consider: 

•  Note that there may be sets of size 3 can not be shattered like below: 

•  So  VC(H) =d means there is at least one set of size d that H can 
shatter. 

Moreover, it is possible to show that 
there is no set of 4 points that this 
hypothesis class can shatter.  
Thus, VC(H)=3 �
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Error Bound with VC Dimension�
•  Theorem.  Let H be given, and let d=VC(H). Then with probability at least 

1-δ, we have that for all h ∈H 

•  Thus, with probability at least 1-δ, we also have that: 

•  In other words, if a hypothesis class has finite VC dimension, then uniform 
convergence occurs as m become large. 

•  Corollary. For                        to hold for all h ∈H with probability at least 
1-δ, it suffices that m=OΥ,δ (d) 

•  In other words, the number of training examples needed to learn “well” 
using H is linear in the VC dimension of H.  

–  It turns out that for “most” hypothesis classes, the VC dimension is also roughly linear in 
the number of parameters. 

–  So the number of training examples needed is usually roughly linear in the number of 
parameters of H. 

| öε(h) ! ! (h) |! O(
d
m

log
m
d

+
1
m

log
1
!

)

! ( öh) ! ! (h*)+O(
d
m

log
m
d

+
1
m

log
1
!

)

|! (h) ! ö! (h) |! "
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Thanks! 

HP: http://keg.cs.tsinghua.edu.cn/jietang/ 
Email: jietang@tsinghua.edu.cn 


